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Abstract: Owing to the existence of noise and intensity inhomogeneity in brain magnetic resonance (MR) images, the existing
segmentation algorithms are hard to find satisfied results. In this study, the authors propose an improved fuzzy C-mean
clustering method (FCM) to obtain more accurate results. First, the authors modify the traditional regularisation smoothing term
by using the non-local information to reduce the effect of the noise. Second, inspired by the mechanism of the Gaussian mixture
model, the distance function of FCM is defined by using the form of certain exponential function consisting of not only the
distance but also the covariance and the prior probability to improve the robustness. Meanwhile, the bias field is modelled by
using orthogonal basis functions to reduce the effect of intensity inhomogeneity. Finally, they use the hierarchical strategy to
construct a more flexibility function, which considers the improved distance function itself as a sub-FCM, to make the method
more robust and accurate. Compared with the state-of-the-art methods, experiment results based on synthetic and real MR
images demonstrate its accuracy and robustness.

1 Introduction
Accurate segmentation of brain magnetic resonance (MR) images
to three main tissues: grey matter (GM), white matter (WM) and
cerebrospinal fluid (CSF) is fundamental in brain diseases
diagnosis. In automatic analysis for brain MR images,
segmentation algorithms [1] using computer vision and pattern
recognition plays an important role. However, brain MR images
are often corrupted by some classical image deterioration, such as
noise and intensity inhomogeneity (also named as bias field),
which affect the effectiveness of the segmentation methods.

Fuzzy C-means method proposed by Dunn [2] is one of the
most widely used clustering methods for images segmentation. It
allows the clustering procedure maintain more information from
image than hard clustering methods such as K-means [3] and
obtain more accurate results. However, it has been proved that [4]
the fuzzy C-mean clustering method (FCM) is sensitive to noise
without considering any spatial information. Furthermore, the FCM
is not robust enough for its Euclidean distance.

Recently, various improved FCM-type clustering schemes [2–
11] have been proposed by incorporating spatial constraints to
reduce the effect of the noise. Krinidis and Chatzis [4] proposed an
algorithm called fuzzy local information C-means (FLICM) by
using a fuzzy local similarity measure to reduce the effect of the
noise. Pham [12] modified the FCM objective function by
introducing a spatial penalty term to estimate the spatially smooth
membership.

Gaussian mixture model (GMM) [6, 11, 13–23] is another
widely used method for image segmentation, which models the
pixel intensities by using a mixed Gaussian distribution. In order to
reduce the segmentation sensitivity to noise, Markov random field
(MRF) theory has been used to impose spatial information. In [16–
18], the complex smoothing prior information is used to reduce the
effect of the noise; however, the M-step of expectation
maximisation (EM) algorithm cannot be applied directly to the
prior distribution. In order to overcome this drawback, Nguyen et
al. introduced a novel factor to incorporate spatial information
between neighbouring pixels into MRF distribution [4]. To

improve the robustness of FCM, many manuscripts [6, 9, 24]
modified the Euclidean distance by using Gaussian distribution.

Recently, many manuscripts [6, 12, 25–27] have proved that the
effect of the bias field is harder to reduce than that of noise. Pham
[12] proposed first- and second-order regularisation terms to
reduce the effect of the bias field. However, the coefficients of the
regularisation terms are hard to adjust for satisfied results. Li et al.
[27] proposed a coherent local intensity clustering criterion
function to evaluate the classification and the bias field estimation,
and used a Gaussian convolution operation to preserve the
smoothness of the estimated bias field. Another kind of bias field
estimation method is based on the basis functions [6, 28, 29]. The
main idea of these methods is selecting basis functions to form
linear combination for modelling the bias field.

Following these ideas, Ji et al. [6] proposed a robust spatially
constrained fuzzy C-means (RSCFCM) algorithm to obtain more
accurate results. The RSCFCM used a novel spatial factor, which
the proposed spatial factor is constructed based on the posterior
probabilities and prior probabilities, and takes the spatial direction
into account, to overcome the impact of noise. The RSCFCM can
estimate the bias field meanwhile segmenting images. However,
the RSCFCM only uses intensity information of pixels on one
direction of horizontal, vertical and two diagonal, which makes it
may lose details when segmenting object with slender topological
structure.

To obtain more robust results, the hierarchical strategy has been
proposed to improve mixture models [7, 8]. The hierarchical
mixture classifier can provide class conditional density estimates as
flat mixtures. Inspired by these ideas, we propose a non-local-
based spatially constrained hierarchical fuzzy C-means
(NLSCHFCM) algorithm. In NLSCHFCM, a new factor
constructed by weighted combination of posterior probabilities and
prior probabilities of neighbourhood is incorporated to
regularisation term, which makes the NLSCHFCM preserve more
abundant details in brain MR images while reducing the effect of
the noise effectively. In order to further improve the ability to
identify the segmentation for each pixel, the distance function is
constructed by using Gaussian distribution. In order to obtain more
robust results, we represented the improved distance function by a
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sub-FCM of two or three sub-components. The experiments on
both synthetic and real brain MR images show that the proposed
model can successfully reduce the effect of the noise and bias
fields. The NLSCHFCM can obtain more accurate results than
those of several state-of-the-art methods.

2 Related work
2.1 Fuzzy C-means framework

Let I denote an observed image composed a set of pixels{xi ∈ I|i = 
1, …, N} with dimension D. The FCM [1] classifies I into K
clusters based on minimising the energy function

�FCM = ∑� = 1
� ∑� = 1

� ��, �� ��− ��22 (1)

where vk is the cluster centroid of the kth class; ui,kis the
corresponding membership, which can measure the membership
ratios of pixel ibelonging to the kth class, and satisfies ui,k ∈ [0, 1],∑� = 1� ��, � = 1; m ∈ (1, ∞) is the fuzzy coefficient.

From (1), we can observe that the standard FCM only uses the
intensity information of each pixel, which makes it sensitive to
noise and intensity inhomogeneity without any spatial information
tacking into consideration. In order to reduce the effect of noise,
Pham [12] proposed a model called robust fuzzy C-means
algorithm (R_FCM) by using neighbourhood information of each
pixel. The energy function can be written as�R_FCM = �FCM+ �Reg= ∑� = 1

� ∑� = 1
� ��, �� ��− ��22+ �2 ∑� = 1

� ∑� = 1
� ��, �� ∑� ∈ Ω� ∑� ∈ ����, �� (2)

where Ωi is the neighbourhood of pixel i, Lj = {1, …, k− 1, k + 1,
…, K}. The parameterβ controls the trade-off between the data
term and the regularisation term. The R_FCM can reduce the effect
of the noise; however, the size of the neighbourhood is hard to
choose when segmenting images with different noise. Furthermore,
R_FCM may loss details in subtraction region easily for using
isotropic neighbour information. In order to preserve more detail
information, Caldairou et al. [5] improved FCM by using the non-
local framework (NL_R_FCM) (see (3)) where Wi,j is the weighted
parameter measuring the similarity between two patchesPi and Pj

��, � = 1H�exp −� �� − � �� 22ℎ2 (4)

Pi is the neighbour patch centred at pixel i with radius sizeS; Hi is a
normalisation to ensure ∑��, � = 1; h is a non-negative constant;
andX(Pi) is the vector representing the intensity information of
patch Pi. The non-local information used in NL_R_FCM contains
local region information, which makes it preserve more detail
information than single intensity information and makes
NL_R_FCM can obtain more accurate results. Furthermore, the
NL_R_FCM can reduce the effect of intensity inhomogeneity by
using non-local-based regularisation term. However, from (3), we
can find that the distance function is based on Euclidean distance
and only use the cluster centroid information, which makes the
method inaccurate.

2.2 GMMs framework

Clustering algorithms based on finite mixture model have become
increasingly popular in recent years. Given the image sampled
from continuous random distribution with unknown density f(x). A
mixture of multivariate normal component densities is typically
used to describe the data. Thus, f(x) can be estimated by using a
GMM [6, 13]

� �� |� = ∑� = 1
� ��, ��(�� |��) (5)

where πi,k represents the mixing probabilities, which satisfies��, � > 0, ∑���, � = 1. ϕ(xi|θk) is the Gaussian density function

� �� |�� = 1(2�)�/2 1Σ� 1/2exp − 12(��− ��)TΣ�−1(��− ��) (6)

with parameter θk = {μk, Σk}, k = (1, 2, …, K). μk is the mean and
the Σk is the covariance. Note that xi in (5) is independent, the joint
condition density of the image data set can be modelled as

� X|Π, Θ = ∏� = 1
� � �� |Π, Θ = ∏� = 1

� ∑� = 1
� ��, ��(�� |��) . (7)

As shown in (5), we can find that the GMM is sensitive to the noise
without any spatial information. To deal with this shortcoming,
MRF theory [9] is widely used to incorporate the spatial
information into classification methods

� Π = 1�exp − 1��(Π) (8)

where U(Π) is the smoothing prior, Z is a normalising constant and
T is the temperature constant. With the Bayes’ rules, the log-
likelihood function can be written as� Π, Θ|X = log(� Π, Θ|X )∝ log(�(X|Π, Θ)�(Π))′= ∑� = 1

� log ∑� = 1
� ��, ��(�� |��) + log(�(Π))

= ∑� = 1
� log ∑� = 1

� ��, ��(�� |��) − log � − 1��(Π))
(9)

and can be maximised by using EM algorithm. Many different
ways to select energy U(Π ) have been adopted when segmenting
different kind of images. Nguyen and Wu [13] have pointed that
the prior distribution πi,k cannot be calculated by using the M-step
of EM algorithm directly. Thus, the calculation of the prior
distribution πi,k needs some computationally complex algorithms.
In order to deal with this problem, they proposed a novel factor Gi,k
by using prior distributions and posterior probability as

��, � = exp �2�� ∑� ∈ ∂�(��, �� + ��, �� ) (10)

where zn,k is the posterior probability and β is non-negative
constant to control the smoothing prior. ∂i is the neighbourhood of
the ith pixel. Then, they introduced the smoothing prior U(Π) by
the following equation:

�NL_R_FCM = �NL_FCM+ �NL_Reg= ∑� = 1
� ∑� = 1

� ∑� ∈ Ω�
��, ���, �� ��− ��22+ �2 ∑� = 1

� ∑� = 1
� ��, �� ∑� ∈ Ω�

��, � ∑� ∈ ����, �� (3)
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� Π = − ∑� = 1
� ∑� = 1

� ��, �� log��, ��+ 1 (11)

where t indicates the iteration step. With this factor, Nguyen
proposed a robust spatially constrained GMM (FRSCGMM),
which can reduce the effect of noise efficiently. However, from
(10), we can find that the method can reduce the effect of the noise
by using neighbourhood information easily. However, each pixel in
the neighbourhood has same weighting, which makes the improved
method easily lose detail information when segmenting objects
with slim structure such as CSF in brain MR images.

To obtain more accurate results, Ji et al. [6] introduced a new
factor Fi,k considering the spatial direction

��, �� = exp �2�� ∑� ∈ ∂���∗ (��, �� + ��, �� ) (12)

where, ∂���∗ is the neighbourhood of pixel i at direction ��∗, which is
given by the following equation:��∗ = arg min� = [1, �] ∑� ∈ ∂��dist(��, ���) (13)

dist(��, ���) is the Euclidean distance between pixel i and cluster
centre vk. ∂�� is the neighbourhood at direction s (four directions
horizontal, vertical and two diagonal directions). Then, they
proposed a fuzzy clustering-type objective function (RSCFCM) by
using the new factor and can obtain more accurate results than
FRSCGMM. From (12), it can be found that the improved factor
only use the information of pixels on one of the four direction and
the pixels in each direction have same weights, which makes
RSCFCM still lose detail information.

3 Non-local-based spatially constrained fuzzy C-
means (NLSCFCM)
Motivated by the use of non-local information in NL_R_FCM [5]
and the constructions of factor in RSCFCM [6], we propose an
NLSCHFCM algorithm for brain MR image segmentation by
introducing a novel non-local-based factor

NLF�, �� = exp �2�� ∑� ∈ ∂���,�(��, �� + ��, �� ) (14)

where Wi,n is the weighted parameter calculated by using (4).
Therefore, we proposed an improved fuzzy clustering-type
objective function based on the novel factor NLFi,k

�NLSCFCM = ∑� = 1
� ∑� = 1

� ��, �� (− log(��, ��(�� |��))+ ∑� = 1
� ∑� = 1

� NLF�, �� log(��, �) (15)

In [27, 30], the bias field is reconstructed by using the liner
combination of basis functions and can be written as

�� = ∑� = 1
� ���� � = �TΨ � (16)

where ql ∈ R,   l = 1, …, L, are the combination coefficients. φl is
the orthogonal basis function and satisfies: ∫Ω�� � �� � d� = ��, �,

δi,j = 1 for i = j and δi,j = 0 for i ≠ j . Following the idea of [25, 28],
we use the orthogonal Legendre polynomials as the basis functions.
The size of the coefficients is L = (n + 1)(n + 2)/2 for two-
dimensional (2D) case and L = (n + 1)(n + 2)(n + 3)/6 for 3D case.
Here, n is the degree of Legendre polynomials and depend on prior
knowledge of the coil and smoothness of the bias field.

Then, the objective function can be written as

�NLSCFCM = ∑� = 1
� ∑� = 1

� ��, �� (− log(�(�� |��,��))− ∑� = 1
� ∑� = 1

� ��, �� log(��, �)
+ ∑� = 1

� ∑� = 1
� NLF�, �� log(��, �)

(17)

where

�(�� |��,��) = 1(2�)�/2 1Σ� 1/2exp− 12(��− ����)TΣ�−1(��− ����) .
4 Non-local-based spatially constrained
hierarchical fuzzy C-means
In this subsection, we introduce a more flexible fuzzy algorithm
called NLSCHFCM. The idea is straightforward and easy to
implement. We assume the distance function is a sub-fuzzy model
and (17) can be written as

�NLSCHFCM = ∑� = 1
� ∑� = 1

� ��, �� ∑� = 1
� ��, �, �� ����+ ∑� = 1

� ∑� = 1
� NLF�, �� log(��, �) (18)

where diko is the sub-distance function and defined as (see (19)) 
vi,k,o is the sub-membership and satisfies ∑� = 1� ��, �, � = 1. It can be
seen that the sub-membership vi,k,o represents the oth sub-class that
belongs to the kth class. Equation (18) can be considered that the
model has two levels: the image data is classified into K classes in
the first level; the data in the kth class is generated by O sub-
clusters in the second level. When o in the second level is set as 1,
then hierarchical fuzzy C-means (HFCM) is degraded to FCM. So,
the HFCM can be regarded as an extension of standard FCM.
Furthermore, in HFCM, each point belongs to which class not only
based on the distance function, but also based to the sub-
component information.

To show the robustness of HFCM, we compared HFCM with
standard FCM on a synthetic data, which includes three classes of
points from three Gaussian components. Each class has 700 points
and the parameters of these three Gaussian distributions are: μ1 = 
(− 1, 1)T, μ2 = (1, 4)T, μ3 = (4, 1)T, Σ1 = diag(1/2, 1/2), Σ2 = 
diag(1/7, 1/7), and Σ3 = diag(1/2, 1/2), where μi is the mean and Σi
is the covariance. The data is noised by 2100 outliers, which
follows the uniform distribution and located in [−6, 6]. The initial
data and outliers (black points) are shown in Fig. 1a. Fig. 1b shows
the classification result of FCM. From the results, we can find that
due to the effect of the outliers, some points that belong to green
class have been misclassified into blue class. Fig. 1c shows the
result of HFCM. By using the sub-component information, the
HFCM can obtain more accurate results. We use the
misclassification error (MCR) to measure the accuracy and the
MCRs of FCM and HFCM are 9.8 and 0.28%, respectively. Then,
we can conclude that the HFCM improves the classification
performance significantly by containing hierarchical information. 
 

���� = − log ��, �� �� |���,��= − log ��, � 1(2�)�/2 1Σ�� 1/2exp − 12 ��− ����� TΣ��−1(��− �����) (19)
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Remark 1: In RSCFCM, from (14), we can find that only one
direction can be considered in ��, �� , and only the intensity of each
pixel in neighbour is used, which makes RSCFCM efficiently, but
inaccurate. In our proposed factor, we use the patch information to
contain more detailed information. In NLFi,k, all the pixels in the
neighbour have been considered and have different weights, which
are calculated by using patch information, to reduce the effect of
noise and preserve more details. The calculation of the weights
may make NLSCFCM inefficient. From (4), it can be found that
the weights can be pre-calculated to reduce the computational
complexity.
 
Remark 2: From (3), it can be sound that the non-local information
in NL_R_FCM [5] is used on traditional Euclidean distance. The
dissimilarity function in our proposed model is defined by using
the negative log-posterior, which can improve the ability to identify
the class for each pixel. The NL_R_FCM use the local neighbour
information to reduce the effect of intensity inhomogeneity, when
the intensity inhomogeneity level is severe, the method is hard to
find accurate result. In our method, the bias field estimation has
been coupled into the model, which makes the proposed method
can estimate the bias field meanwhile segmenting images even
with severe intensity inhomogeneity.
 
Remark 3: The proposed method uses the HFCM to improve the
robustness of FCM and makes the method less sensitive to the
effect of outliers.

The objective function JNLSCHFCM can be minimised similarly
to the standard FCM algorithm. We take the first derivatives of
JNLSCHFCM with respect to u, μ, Σ and Qto zero results.

Using the Lagrange multiplier method, the membership
estimator u and v can be written as

��, �� = ∑� = 1� ��, �, �� −log ��, �� �� |���,�� 1/(1−�)∑� = 1� ∑� = 1� ��, �, �� −log ��, �� �� |���,�� 1/(1−�) (20)

��, �, �� = −��, �� log ��, �� �� |���,�� 1/(1− �)∑� = 1� −��, �� log ��, �� �� |���,�� 1/(1− �) (21)

Solving (∂JNLSCHFCM/∂μko) = 0 and (∂JNLSCHFCM/∂Σko) = 0, we
can obtain

��, �� = ∑� = 1� ��, �� ��, �, �� ����∑� = 1� ��, �� ��, �, �� ��2�� (22)

Σ�, �� = ∑� = 1� ��, �� ��, �, �� (��− �����)(��− �����)T∑� = 1� ��, �� ��, �, �� (23)

The computation of the conditional expectation values zi,k in the
iteration step t can be written as

��, �� = ��, ��(�� |���,��)∑� = 1� ��, ��(�� |���,��) (24)

Solving (∂JNLSCHFCM/∂πi,k) = 0 with the constraint ∑� = 1� ��, � = 1
by using the Lagrange's multiplier method, it can be found

��, �� = ��, �� + NLF�, �∑� = 1� ��, �� + NLF�, � (25)

Solving (∂JNLSCHFCM/∂Q) = 0, the combination coefficients can be
calculated by the following equation:

�� = ∑� = 1
� Ψ(�)Ψ � T�1(�) −1 ∑� = 1

� Ψ(�)�2(�) (26)

where

�1 � = ∑� = 1
� ∑� = 1

� ��, �, �� ��, �� ���T Σ��−1���, �2 � = ∑� = 1
� ∑� = 1

�
��, �, �� ��, �� ��TΣ��−1�� .

The L × L matrix ∑� = 1� Ψ(�)Ψ � T�1(�) is non-singular. The detail of
derivation of (20)–(26) is given in Appendix 1.

For a deep understanding of our method, we summarise the
process as follows:

Step 1: Initialisation of u, v, μ, Σ and Q.
Step 2: Calculate Wi,j for all pixels in the image by using (4).
Step 3: Update membership function ui,k by using (20).
Step 4: Update membership function vi,k,o by using (21).
Step 5: Updating conditional expectation value zi,k by using (24).
Step 6: Update prior probability πi,k by using (25).
Step 7: Update the novel factor NLFi,k by using (14).
Step 8: Update combination coefficients of the bias field by using
(26).
Step 9: Update centroids and covariance matrices by using (22) and
(23).
Step 10: Check convergence criterion. If convergence has been
reached, stop the iteration, otherwise, go to step 3.

5 Experimental results
In this section, we segment synthetic and clinical 3T brain MR
images into WM, GM and CSF by using the proposed
NLSCHFCM algorithm. Unless otherwise specified, the
parameters used in our experiments are set as follows: radius size
of non-local patch is set as S = 1. Radius size r of searching is 3.
The non-negative constant h is set as 4. Temperature value is set as
β  = 3. The degree of basis function is set as n = 4 and then the

Fig. 1  Classification results on synthetic data
(a) Original data (three classes) with outliers, (b) Solution of FCM with MCR 9.8%, (c) Solution of HFCM with MCR 0.28%
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number of the basis function L is 15. The fuzzy factor m and n take
their default values 2.

5.1 Evaluation with synthetic data

To show the improvement from our method, we compare our
method with seven existing segmentation methods, including three
GMM-based methods (SCGM_EM AQ7 [31], CA_SVFMM [32],
and FRSCGMM [13]) and four FCM-based methods (TMTFCM
[10], FLICM [4], RSCFCM [6] and NL_R_FCM [5]. The
parameters for each algorithm are set with the default values with
the default values shown in the papers, which can be seen in
Table 1. All the methods are initialised by using K-means method. 

Since SCGM_EM, CA_SVFMM, FRSCGMM, TMTFCM and
FLICM have not considered the effect of intensity inhomogeneity,
we first test on a synthetic brain magnetic resonance imaging
(MRI) data set from BrainWeb with the parameter: noise level 3%
and intensity inhomogeneity level 0% (N3F0). Fig. 2 shows
segmentation results of the 85th transaxial image. Figs. 2a and b
show the initial image and the ground truth. Figs. 2c–j show the
segmentation results of SCGM_EM, CA_SVFMM, FRSCGMM,
TMTFCM, FLICM, RSCFCM, NL_R_FCM and our method,
respectively. 

The SCGM_EM and FRSCGMM use isotropic spatial
information, which makes the segmentation results are not satisfied
enough. In order to add direction information into finite mixture
model (FMM), the CA_SVFMM (Fig. 2d) improves the log-
likelihood function by using local information, however, in order to
update the contextual mixing proportions, the CA_SVFMM needs

to solve a second degree equation, which may make the results
unsatisfied [6]. FLICM (Fig. 2g) proposed a factor by
incorporating local spatial and local grey level information to
reduce the effect of noise. However, the weights of pixels are based
on spatial distance and the similar function is based on Euclidean
distance, which makes it inaccurate. TMTFCM (Fig. 2f) uses the t-
distribution as the distance function to improve the accuracy.
However, it used isotropic neighbourhood information, which
makes the method lose details. In order to reduce the effect of
noise, the RSCFCM (Fig. 2h) uses neighbourhood information to
construct a new factor. However, only one direction of the
neighbourhood can be considered and each pixel in the direction
has same weight, which makes the method lose details. Fig. 2i is
the segmentation result of NL_R_FCM. From the result, it can be
found some pixels belong to GM have been misclassified into CSF.
The bottom of Fig. 2 shows the details of each red rectangles in
each segmentation results. Comparing with segmentations obtained
by using other algorithms, the NLSCHFCM can visually obtain the
best result.

The second experiment is tested on the 85th transaxial image
with parameter: N3F60. From the results shown in Fig. 3, we can
find that SCGM_EM (Fig. 3c), CA_SVFMM (Fig. 3d),
FRSCGMM (Fig. 3e), TMTFCM (Fig. 3f) and FLICM (Fig. 3g)
are sensitive to intensity inhomogeneity; RSCFCM, NL_R_FCM
and NLSCHFCM can reduce the effect of intensity inhomogeneity.
The RSCFCM and NLSCHFCM use basis functions to estimate the
bias field. In NLSCHFCM, we use non-local patch information and
hierarchical information to reduce the effect of noise and preserve
more detailed information, which makes the bias estimation more
accurate than that of RSCFCM. From the reuslts, we can find that
our method is better than RSCFCM. The NL_R_FCM reduces the
effect of intensity inhomogeneity by using non-local information;
however, it is based on Euclidean distance, which makes the
method inaccurate. The bottom of Fig. 2 shows the details of each
red rectangles in each segmentation results. From the details, we
can find that our method can obtain more accurate results. 

To facilitate the visions, we use Jaccard similarity (JS) [27] as
the metric to quantitatively evaluate the segmentation accuracy.
The JS is the ratio between intersection and union of the segmented
volume S1 and ground truth volume S2

JS �1, �2 = �1 ∩2��1 ∪2� (27)

Table 1 Summary of parameter setting for all methods in
experiments of this section
Method Parameter setting
SCGM_EM size of neighbourhood 5 × 5; temperature value β  = 3
CA_SVFMM size of neighbourhood 3 × 3; the number of direction D 

= 4
FRSCGMM size of neighbourhood 3 × 3; temperature value β  = 3
TMTFCM size of neighbourhood 3 × 3; the impact of

neighbourhood α  = 1
FLICM size of neighbourhood 3 × 3
RSCFCM size of neighbourhood 3 × 3; temperature value β  = 3
NL_R_FCM size of patch 3 × 3; size of searching size 5 × 5
 

Fig. 2  Segmentation results on the 85th transaxial image of a simulated image data set with the parameter: noise level 3% and intensity inhomogeneity level
0% (N3F0)
(a) Initial image, (b) Ground truth, (c–j) Are the segmentation results of SCGM_EM, CA_SVFMM, FRSCGMM, TMTFCM, FLICM, RSCFCM, NL_R_FCM and our method,
respectively. The bottom shows the details of each red rectangles (from left to right is initial image, ground truth, SCGM_EM, CA_SVFMM, FRSCGMM, TMTFCM, FLICM,
RSCFCM, NL_R_FCM and our method, respectively.)
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We apply above eight methods on whole synthetic brain MR image
data sets with N3F0, N3F60, N5F60 and N3F80. The mean JS
values of WM, GM and CSF are listed in Table 2. The results
demonstrate that our method produces the most accurate
segmentation (with higher JS values). Our method is more robust
to the noise (with higher JS values when noise level is increasing)
and has higher robustness to details (with higher JS values for CSF
tissue). 

5.2 Evaluation with clinical data

To show the excellence of our method, we compared our method
with other methods on a clinical 3 T MR brain image data set from
Internet Brain Segmentation Repository (IBSR) (12_3#). The
segmentation results are shown in Fig. 4. Fig. 4a is the 39th of the
12_3#, which has noise, severe intensity inhomogeneity and weak
edges. Fig. 4b is the ground truth. Fig. 4c–j show the segmentation
results of SCGM_EM, CA_SVFMM, FRSCGMM, TMTFCM,
FLICM, RSCFCM, NL_R_FCM and our method, respectively.
Owing to the effect of the intensity inhomogeneity, SCGM_EM,
CA_SVFMM, FRSCGMM, TMTFCM and FLICM failed to obtain
results. The RSCFCM can reduce the effect of intensity
inhomogeneity and obtain more accurate result; however, the
weights of pixels in neighbour are same, which makes the method
sensitive to weak edges. The NL_R_FCM only uses global

centroid information, when the image has weak edges,
NL_R_FCM is hard to find accurate results. It can be seen from the
results in the rectangular region, NL_R_FCM misclassified some
GM pixels into WM. Comparing with segmentations obtained by
using other seven methods, our method can visually obtain the best
result and the mean of JS values of the eight methods on ten total
IBSR data sets are shown in Table 3. Since there are only small
pixels belong to CSF are contained in IBSR data sets, we only
calculate the JS values for WM and GM. From the values shown in
Table 3, we can find that our method can obtain more accurate
results. 

To show the robustness of our method, we compared our
method with the popular softwares: SPM and FSL on a clinical
data. Fig. 5a shows the initial image. It can be found that the initial
image has strong noise and severe intensity inhomogeneity. Fig. 5b
shows the segmentation result of FSL. The FSL uses the MRF to
reduce the effect of noise, however, it is sensitive to the intensity
inhomogeneity. The segmentation result of SPM is shown in
Fig. 5c. The SPM uses atlas information to reduce the effect of
weak edges. Furthermore, the SPM applied intensity
inhomogeneity correction to reduce the effect of intensity
inhomogeneity, which makes SPM can obtain more accurate result
than that of FSL. However, from the result, we can find that many
pixels belong to CSF have been misclassified into GM. Fig. 5d

Fig. 3  Segmentation results on the 85th transaxial image of a simulated image data set with the parameter: noise level 3% and intensity inhomogeneity level
60% (N3F60)
(a) Initial image, (b) Ground truth, (c–j) Are the segmentation results of SCGM_EM, CA_SVFMM, FRSCGMM, TMTFCM, FLICM, RSCFCM, NL_R_FCM and our method,
respectively. The bottom shows the details of each red rectangles (from left to right is initial image, ground truth, SCGM_EM, CA_SVFMM, FRSCGMM, TMTFCM, FLICM,
RSCFCM, NL_R_FCM and our method, respectively.)

 

Table 2 Mean JS values of GM, WM and CSF segmentation obtained by applying eight methods to synthetic brain MR image
data sets

SCGM_EM CA_SVFMM FRSCGMM TMTFCM FLICM RSCFCM NL_R_FCM NLSCHFCM
N3F0 WM 0.849 0.875 0.810 0.763 0.877 0.843 0.820 0.893

GM 0.873 0.867 0.851 0.839 0.864 0.846 0.868 0.881
CSF 0.908 0.892 0.884 0.903 0.893 0.902 0.901 0.915

N3F60 WM 0.813 0.857 0.796 0.753 0.851 0.839 0.836 0.878
GM 0.778 0.794 0.773 0.764 0.796 0.835 0.876 0.876
CSF 0.800 0.804 0.783 0.813 0.816 0.889 0.920 0.921

N5F60 WM 0.784 0.787 0.763 0.729 0.776 0.798 0.803 0.853
GM 0.751 0.706 0.747 0.729 0.706 0.775 0.837 0.843
CSF 0.780 0.745 0.765 0.797 0.746 0.842 0.891 0.894

N3F80 WM 0.767 0.825 0.780 0.720 0.808 0.839 0.810 0.871
GM 0.731 0.751 0.742 0.726 0.745 0.829 0.864 0.874
CSF 0.756 0.760 0.749 0.777 0.765 0.881 0.916 0.917
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 shows the segmentation result of our method. It can be found that
our method can obtain more accurate result than FSL and SPM. 

5.3 Intensity inhomogeneity correction

To show the ability of bias field correction, we compared our
method with Wells method [33], RSCFCM [6] and N3 [34]. Fig. 6
shows the intensity inhomogeneity corrected results on a clinical
data. Fig. 6a shows the initial image. Fig. 6b shows the corrected
result of Wells method. The Wells method uses a low-pass filter to
preserve the smoothness of the bias field, which makes the contrast
lower. Fig. 6c shows the corrected result of RSCFCM. The
RSCFCM can obtain more accurate result than Wells method by
using basis functions. Fig. 6d is the result of N3. Fig. 6e shows the

result of our method. In order to compare the ability of the bias
correction with other methods, we use coefficient of variance (CV)
as a metric to evaluate the performance of the algorithms. CV is
defined as a quotient between standard deviation and mean value
of selected tissue class. A good algorithm for bias correction and
segmentation should give low CV values for the bias-corrected
intensities within each segmented region. The CV values of these
images are listed in Table 4. In this experiment, we use FCM to
segment the corrected images to calculate CV values. The results
shown in Table 4 reflect that the CV values of our method are
lower than those of the Wells method, RSCFCM and N3, which
indicate that the bias-corrected images of our method are more
homogeneous than those of the other two methods. 

Fig. 4  Segmentation results on the clinical MR image
(a) Initial image, (b) Ground truth, (c–j) Are the segmentation results of SCGM_EM, CA_SVFMM, FRSCGMM, TMTFCM, FLICM, RSCFCM, NL_R_FCM and our method,
respectively

 

Table 3 Mean JS values of GM, WM and CSF segmentation obtained by applying eight methods to clinical brain MR image
data sets

SCGM_EM CA_SVFMM FRSCGMM TMTFCM FLICM RSCFCM NL_R_FCM NLSCHFCM
clinical data WM 0.840 0.888 0.875 0.724 0.737 0.852 0.840 0.893

GM 0.810 0.815 0.759 0.742 0.844 0.828 0.751 0.853
 

Fig. 5  Segmentation results on the real MR image
(a) Initial image, (b–d) Are the segmentation results of FSL, SPM and our method, respectively
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5.4 Segmentation results on clinical 3D images

Fig. 7 shows the 3D segmentation results of our method for the
clinical data, which has severe intensity inhomogeneity and noise
(Fig. 5a is the 133th of the data). The first two rows show the
evolutions of the WM and GM surfaces, respectively. To better
view the intermediate results, we also present the edges of the
result for three slices of different axis, as shown in the second row.
It can be observed that satisfactory result has been obtained by our
method. 

6 Discussion
In our experiments, we only analysed the segmentation results on
the skull stripped synthetic and real MR images since the skull
stripped image can avoid the interference of inter subject variation
of non-brain structures. All the brain MR images are all skull
stripped by using the method proposed by Shi et al. [35]. Fig. 8
shows the segmentation of our method on three skull stripped MR
slices generated from BrainWeb (N3F80), together with the
estimated bias fields, bias corrected images and segmentation
results. From the results, we can find that the intensities within
each brain tissue in the bias corrected images become quite
homogeneous. Fig. 9 shows the segmentation of our method on

three MR slices with skulls. It is clear that our method can still
obtain satisfactory results without being influenced by the skulls. 

The degree of basis function determines the accuracy and
stability of the calculated bias field. A much lower degree will
make the estimated bias field inaccurate when image has severe
intensity inhomogeneity. A too large degree will make our method
inefficient, unstable and easily trapped into local optima. Our
experiments showed that the degree of basis functions up to the
four degree sufficiently model the bias field.

In our method, the non-local information is used to reduce the
effect of the noise. The weight Wi,j in (4) will never change after it
has been calculated, so it needs to be calculated only once. We also
analysed the relationship between the parameters of Wi,j and the
misclassification error (MCR). In this paper, we set the size of non-
local patch S as 1 and the size of searching size r as 3. We analysed
the effect of the parameters on a whole simulated image data set
with noise level 4% and inhomogeneity level 60% and the results
are shown in Fig. 10a. From the results, we can find that the MCR
of the results with the different local region parameters and
different search region parameters can affect the accuracy of our
method and when S = 1, our method can obtain more accurate
results. This is because the brain tissues have more topological
changes in the images. We also analysed the effect of the parameter

Fig. 6  Intensity inhomogeneity correction on the real MR image
(a) Initial image, (b–d) Are corrected results of Wells method, RSCFCM, N3 and our method, respectively

 

Table 4 Coefficient of variation (%)
Figure Tissue Wells RSCFCM N3 NLSCHFCM
Fig. 6 WM 7.97 7.53 8.28 7.14

GM 8.82 8.79 9.03 8.73
 

Fig. 7  3D segmentation results of the GM and WM on clinical brain MR data set
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h in (4) on synthetic MRI data sets: N1F60 (noise level is 1% and
inhomogeneity level 60%), N2F60, N3F60, N4F60 and N5F60. In
this experiment, we set S = 1 and r = 3. The results are shown in
Fig. 10b and we can find that when h is located in [3, 6], our
method can obtain satisfactory results. 

7 Conclusion

In this paper, we proposed the NLSCHFCM algorithm for brain
MR image segmentation. The proposed algorithm can reduce the
effect of noise by introducing a novel factor considering the non-
local information and uses the negative log-posterior as the
dissimilarity function to improve the accuracy of the method.
Furthermore, our method can estimate the bias field meanwhile
segmenting the image and has the ability of preserving the details
in brain MR image. In order to obtain more robust and accurate

Fig. 8  Illustration of three skull stripped 3T-weighted brain MR images (first column), the estimated bias fields (second column), bias-corrected images (third
column) and the segmentation results of our method (fourth column)

 

Fig. 9  Illustration of three 3T-weighted brain MR images (first column), the estimated bias fields (second column), bias-corrected images (third column) and
the segmentation results of our method (fourth column)
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results, we use the hierarchical strategy to construct a more
flexibility function, which considers the improved distance
function itself as a sub-FCM. The proposed method can overcome
the draw backs of over-smoothness for segmentations.
Experimental results on both synthetic and clinical images have
shown that our method outperforms several state-of-the-art
segmentation methods when segmenting images with intensity
inhomogeneities and noise.
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10 Appendix
 
10.1 Appendix 1: Derivation of gradient flow

In this Appendix, we give the formal derivation for (20)–(26). The
fuzzy membership and sub-membership can be obtained by
minimising the objective function JNLSCHFCM over ��, � and ��, �, �
under the constraints ∑� = 1� ��, � = 1, ∑� = 1� ��, �, � = 1. Then, we can
obtain

Fig. 10  Misclassified error of the segmentation results on simulated MR images with different parameters of the non-local framework
(a) MCRs of simulated data set N4F60 with different p and r, (b) MCRs of simulated data sets N1F60, N2F60, N3F60, N4F60 and N5F60 with different h
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�NLSCHFCM′ = �NLSCHFCM+ �1 1− ∑� = 1
� ��, � + �2 1− ∑� = 1

� ��, �, � (28)

Taking the derivative of JNLSCHFCM
′ with respect to u and v setting

the result to zero, we have∂�NLSCHFCM′∂��, � = ���, �� − 1 ∑� = 1
� ��, �, �� ����− �1 = 0 (29)

Then, we can obtain

��, � = �1�∑� = 1� ��, �, �� ���� (1/(�− 1))
(30)

As ∑� = 1� ��, � = 1, �1 can be calculated as

�1 = 1∑� = 1� (1/�∑� = 1� ��, �, �� ����) 1/(�− 1)
�− 1

(31)

Substituting (31) into (30), the zero-gradient condition for the
membership u can be rewritten as

��, �� = ∑� = 1� ��, �, �� −log ��, �� �� |���,�� 1/(1−�)∑� = 1� ∑� = 1� ��, �, �� −log ��, �� �� |���,�� 1/(1−�) (32)

Similarly, processing on sub-membership, we can obtain

��, �, �� = −��, �� log ��, �� �� |���,�� 1/(1− �)∑� = 1� −��, �� log ��, �� �� |���,�� 1/(1− �) (33)

For fixed u and v, taking the derivative of JNLSCHFCM with respect
to μko and setting the result to zero, we have∂�NLSCHFCM∂���

= ∂ ∑� = 1� ∑� = 1� ��, �� ∑� = 1� ��, �, �� (− log(��, �(1/(2�)(�/2))(1/ Σ�� (1/2))exp(− (1/2) ��− ����� TΣ��−1(��− �����))))∂��� = 0
⇒ ∑� = 1

� ��, �� ��, �, �� �� ��− ����� = 0
Solving for μko, we have

��, �� = ∑� = 1� ��, �� ��, �, �� ����∑� = 1� ��, �� ��, �, �� ��2�� (34)

Taking the derivative of JNLSCHFCM with respect to Σ��−1, we have

∂�NLSCHFCM∂Σ��−1 = ∂ ∑� = 1� ∑� = 1� ��, �� ∑� = 1� ��, �, �� (− log(��, �(1/(2�)(�/2))(1/ Σ�� (1/2))exp(− (1/2) ��− ����� �Σ��−1(��− �����))))∂Σ��−1= ∂ ∑� = 1� ��, �� ��, �, �� ((1/2)log Σ�� + (1/2) ��− ����� TΣ��−1(��− �����)))∂Σ��−1 = 0
⇒ ∑� = 1

� ��, �� ��, �, �� (��− �����)(��− �����)T = ∑� = 1
� ��, �� ��, �, �� Σ�, �, �

Solving for Σ�, �, we have

Σ�, �� = ∑� = 1� ��, �� ��, �, �� (��− �����)(��− �����)T∑� = 1� ��, �� ��, �, �� (35)

The conditional expectation value zi,k is the posterior probability of
i, then it can be calculated as

��, � = � � | � = �(�, �)�(�) = �(�)�(� |�)∑���(�)�(� |�)= ��, ��(�� |���,��)∑� = 1� ��, ��(�� |���,��) (36)

Solving (∂JNLSCHFCM/∂πi,k) = 0 with the constraint ∑� = 1� ��, � = 1
by using the Lagrange's multiplier method, it can be found

∂�NLSCHFCM∂��, � = ∂ ∑� = 1� ∑� = 1� ��, �� (− log(��, �))−∑� = 1� ∑� = 1� NLF�, �log ��, � + �3 1− ∑� = 1� ��, �∂��, � = 0
⇒ ��, ����, � + NLF�, ���, � − �3 = 0 (37)

Then, we can obtain

��, �� = ��, �� + NLF�, ��3 (38)

As ∑� = 1� ��, � = 1, λ3 can be calculated as

�3 = ∑� = 1
� ��, �� + NLF�, � (39)

Substituting (39) into (28), the zero-gradient condition for πi,k can
be rewritten as

��, �� = ��, �� + NLF�, �∑� = 1� ��, �� + NLF�, � (40)

Solving (∂JNLSCHFCM/∂Q) = 0, the combination coefficients can be
calculated by the following equation:∂�NLSCHFCM∂�

= ∂ ∑� = 1� ∑� = 1� ��, �� ∑� = 1� ��, �, �� (− log(��, �(1/(2�)(�/2))(1/ Σ�� (1/2))exp(− (1/2) ��− �TΨ � ��� TΣ��−1(��− �TΨ � ���))))∂� = 0
⇒ ∂∑� = 1� ∑� = 1� ��, �� ∑� = 1� ��, �, �� ��− �TΨ � ��� TΣ��−1 ��− �TΨ � ���∂� = 0
⇒ ∑� = 1

� Ψ � Ψ � T ∑� = 1
� ∑� = 1

� ��, �� ��, �, �� ���T Σ��−1���� = ∑� = 1
� Ψ(�) ∑� = 1

� ∑� = 1
� ��, �� ��, �, �� ��TΣ��−1��

Then, we can obtain

�� = ∑� = 1
� Ψ(�)Ψ � T�1(�) −1 ∑� = 1

� Ψ(�)�2(�) (41)

where

�1 � = ∑� = 1
� ∑� = 1

� ��, �, �� ��, �� ���T Σ��−1���, �2 � = ∑� = 1
� ∑� = 1

�
��, �, �� ��, �� ��TΣ��−1��� .

The L × L matrix ∑� = 1� Ψ(�)Ψ � T�1(�) is non-singular and the proof
can be seen in [27].
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